Cutting-edge iron ore pelletizing technology in the context of TOREX company experience
RANGE OF SERVICES

Engineering study of the operating equipment
- evaluation of the process efficiency
- development of retrofitting options

Basic engineering
- development of heat flow and process flow diagrams
- development of technical documentation
- selection of equipment
- functional description of automation diagrams

Start-up and commissioning and operating mode adjustment services
- development of process parameter tables/charts
- development of operating procedures
- plant personnel training

Manufacturing of custom equipment

- Direct reduction/metallization process
- Blast furnace production process
CUSTOMERS WORLDWIDE

5,0 MTPY Sangan Pelletizing Plant 1, IMIDRO, Iran
5,0 MTPY Sangan Pelletizing Plant 2, Mobarakeh, Iran
Full-scale engineering of plants. Basic design/engineering of OM-672 [672 m³ indurating machine].
Audit of equipment selection. Basic design/engineering of the ACS. Supervision over detailed design, civil works and erection.
Training of the personnel. Adjustment. Commissioning

5,0 MTPY TKOM-3, MGOK, RUSSIA
Comprehensive engineering of process complex of the indurating machine No 3. Patented thermal diagram of the indurating machine -1-592M

1.2 MTPY Shri Jagannath & Steels Pvt. India
Basic design/engineering and supervision over detailed design by UZTM - MOK-2-189.
Basic design of the ACS, refractory lining and insulation

1.2 MTPY Crest Steel & Power Ltd. Durg, India
Basic engineering, audit and process supervision over manufacturing 1.2 MTPY
UZTM MOK-1-189

0.8 MTPY Minera Steel & Power Pvt Ltd. Bellary, India
Basic engineering/design and supervision over the detailed design documents prepared by UZTM MOK-108.
Basic design of the ACS, refractory lining and insulation

Tubarao Pellet Plant I & II, VALE, Brazil
Technological assistance in the design and implementation of the retrofitting of Lurgi-278 and Lurgi-430.
Performance tuning. Commissioning

TENOGA MINERALS, SOUTH AFRICA
Developing cooperation in the processing of chromite raw materials for customers in China and India

TENOGA MINERALS, SOUTH AFRICA
Developing cooperation in the processing of chromite raw materials for customers in China and India

1.2 MTPY Minera Steel & Power Pvt Ltd. Bellary, India
Basic engineering/design and supervision over the detailed design documents prepared by UZTM MOK-108.
Basic design of the ACS, refractory lining and insulation

Crest Steel & Power Ltd. Durg, India
Basic engineering, audit and process supervision over manufacturing 1.2 MTPY
UZTM MOK-1-189

1.2 MTPY Shri Jagannath & Steels Pvt. India
Basic design/engineering and supervision over detailed design by UZTM - MOK-2-189.
Basic design of the ACS, refractory lining and insulation

5,0 MTPY Sangan Pelletizing Plant 1, IMIDRO, Iran
5,0 MTPY Sangan Pelletizing Plant 2, Mobarakeh, Iran
Full-scale engineering of plants. Basic design/engineering of OM-672 [672 m³ indurating machine].
Audit of equipment selection. Basic design/engineering of the ACS. Supervision over detailed design, civil works and erection.
Training of the personnel. Adjustment. Commissioning

5,0 MTPY TKOM-3, MGOK, RUSSIA
Comprehensive engineering of process complex of the indurating machine No 3. Patented thermal diagram of the indurating machine -1-592M
COMPREHENSIVE APPROACH TO THE CREATION OF INNOVATIVE PRODUCTION FACILITY

Problem statement

Pelletizing and Induration Tests

Start-up & commissioning

Development and implementation of technologies

Pilot-scale tests

Numerical simulation

Engineering

Analysis of the basic data
- physical and chemical properties of raw materials/feed
- target values
- conceptual solutions

Laboratory studies
- determination of the optimum specific surface area value
- optimum blend proportioning
- moist, dry and fired pellets

Research/experiments at an operating plant
- balling (green pelletizing)
- firing in an industrial-scale unit
- metallurgical properties

Process engineering
- adaptation of research and experimental data
- numerical simulation to offer an optimal solution
- adjustment of the operating mode of a process unit/furnace
- justification of the efficiency

Start-up and commissioning and operating mode adjustment services
- plant personnel training
- Development of operating procedures/manuals
- start-up of equipment, performance guarantee tests

Technical documentation and services
- process flow sheet, heat flow diagram of the indurating machine
- technical specifications, process procedures etc.
- selection of equipment, consultations

Start-up and commissioning and operating mode adjustment services
- plant personnel training
- Development of operating procedures/manuals
- start-up of equipment, performance guarantee tests

Technical documentation and services
- process flow sheet, heat flow diagram of the indurating machine
- technical specifications, process procedures etc.
- selection of equipment, consultations
INTEGRATED TECHNOLOGY
FOR PRODUCTION OF IRON ORE PELLETS

ADVANCED ENGINEERING SOLUTIONS
- Combined flow sheet for the vacuum filtration of the slurry
- Prefeeding of additives to improve binder properties
- Non-contact measurement system of the grain-size composition and quality of green pellets
- Energy-efficient and environment-friendly thermal circuit of an indurating machine

INNOVATIVE TECHNICAL SOLUTIONS
- Slurry averaging in tanks with agitators
- Application of high-efficiency mixers for blend components’ mixing
- Installation of bins for blend conditioning prior to pelletizing
- Application of water-air nozzles in pelletizers
- Collecting & distributing conveyor with a reciprocating discharge section for green pellets
- Air-tight and water-proof longitudinal seals at the MOK-1-592M indurating machine
- Flexible pellet screening and handling system for fired pellets
- Sheltered warehouse for product pellets

Diagram:
- 2 radial thickeners D = 50 m
- 18 disc vacuum filters
- 3 groups of bins
- 8 pelletizing lines with an individual three-product roller screen each
- Blend components preparation
- Pelletizing
- Heat treatment
- Blast furnace process
- Direct reduction process
FILTRATION, PRODUCTION AND FEEDING OF GREEN PELLETS ONTO THE INDURATING MACHINE

Control over the balling process

CALCULATION OF SET POINTS:
1. Stabilization of blend feed rate to pelletizers
2. Control over:
 - rate of a binder (bentonite)
 - water feed rate to pelleting
 - drum screen rotation speed
 - rotation speed of roller feeder rollers

SLURRY FILTERING
- 3 process lines with 6 disc vacuum filters each (1 filter in each line as standby);
- 3 vacuum systems;
- 3 compressed air systems for cake blowing

UNIQUE MATERIAL HANDLING SYSTEM
- Reduction in the number of transfer points and transfer height
- Uniform distribution across the width
- Reduction in the amount of recycled/return product - energy saving
- Consistent quality of green pellets

Point of feeding of pellets to a collecting conveyor is selected automatically
MOK-1-592M THERMAL CIRCUIT
OF THE NEW GENERATION STRAIGHT-GRATE INDURATING MACHINE DEVELOPED BY NPVP TOREX

PRINCIPAL SOLUTIONS

- 3-section drying area preventing overmoistening
- Selective feeding of the cool medium from the cooling zone
- Optimal distribution of the heat medium by process zones
- Fan-less gas recycling mains (2 collecting mains/manifolds)
- No dedusting of gases in recycled gas ducts
- Application of injection burners
- Gas ducts and collecting mains/manifolds ensuring minimum aerodynamic resistance
- Flexibility of in-furnace thermal and gas flow mode

EFFICIENCY

- High recycling rate of the heat medium
- Rational proportioning of loads on process fans (max efficiency)
- Low volume of off gases
- Low natural gas and power consumption

### Item	Parameter	UOM	Values
1 | Annual production (output) | mln. t | 5.0
2 | Specific production rate | t/m²·h | 1.07
3 | Specific fuel consumption | nm³/h | 9.5
4 | Specific power consumption (Fans) | kWt/ton | < 36 (22)
5 | Volume of off gases transferred to the off gas stack | nm³/h | 1400
6 | Compression strength | kg/pellet | > 250
Types of Raw Materials and Pellets Quality

<table>
<thead>
<tr>
<th>Raw material type</th>
<th>Ordinary concentrate MGOK</th>
<th>Flotation concentrate MGOK</th>
<th>Mix MGOK+LGOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFe, %</td>
<td>60,6</td>
<td>58,9</td>
<td>63,3</td>
</tr>
<tr>
<td>FeO, %</td>
<td>0,64</td>
<td>0,65</td>
<td>1,00</td>
</tr>
<tr>
<td>CaO</td>
<td>4,38</td>
<td>4,1</td>
<td>0,62</td>
</tr>
<tr>
<td>SiO₂</td>
<td>8,20</td>
<td>8,5</td>
<td>8,49</td>
</tr>
<tr>
<td>MgO</td>
<td>-</td>
<td>1,7</td>
<td>0,35</td>
</tr>
<tr>
<td>Basicity CaO/SiO₂, %</td>
<td>0,534</td>
<td>0,482</td>
<td>0,073</td>
</tr>
<tr>
<td>Contraction strength, kg/pel</td>
<td>279,0</td>
<td>294</td>
<td>273,0</td>
</tr>
<tr>
<td>Tumble index +5 mm,%</td>
<td>97,75</td>
<td>96,83</td>
<td>97,00</td>
</tr>
<tr>
<td>Tumble index -0,5 mm,%</td>
<td>2,25</td>
<td>2,98</td>
<td>2,65</td>
</tr>
<tr>
<td>LTD +6,3 (ISO 13930), %</td>
<td>95,72</td>
<td>91,72</td>
<td>98,09</td>
</tr>
<tr>
<td>LTD -3,15 (ISO 13930), %</td>
<td>3,02</td>
<td>6,48</td>
<td>1,67</td>
</tr>
<tr>
<td>LTD -0,5 (ISO 13930), %</td>
<td>2,63</td>
<td>6,03</td>
<td>1,57</td>
</tr>
<tr>
<td>RI (ISO 4695), %</td>
<td>66,6</td>
<td>51,17</td>
<td>49,9</td>
</tr>
</tbody>
</table>
MOK-1-592M
POWER AND ENVIRONMENTAL EFFICIENCY IN EACH DESIGN ELEMENT

MINIMUM POWER CONSUMPTION ON THE TRANSFER OF THE HEAT MEDIUM. STABILIZATION OF FLOW VELOCITY
- aerodynamic shape of recuperating mains/manifolds
- Attachment of the combustion chamber downcomers with the recuperating main at 45 deg
- directional attachment of wind-box branch pipes with conical collecting mains/manifolds.

INJECTION BURNERS
- small volume of air for combustion
- low NOx

ELECTROSTATIC PRECIPITATORS
Hydraulic resistance of less than 200 Pa
Dust cleaning efficiency up to 98%

SWIRLERS
Rapid temperature averaging of the gas mixture transferred to the preheating zone

LINING AND INSULATION
- Efficient advanced materials
- Low heat losses via the outer surface

Drying 1 hood with distributed air input
Central and side recuperating mains
Drying 2 hood
Drying 3 hood
MOK-1-592M
POWER AND ENVIRONMENTAL EFFICIENCY IN EACH DESIGN ELEMENT

3-SECTION DRYING ZONE

- Removal of physical and chemical bound moisture rapidly, without the decomposition of green pellets
- Flexibility in the selection of drying modes for different types/grades of pellets

THREE RECUPERATING MAINS

- Uniform flow temperature as opposed to the recuperating mains of a large diameter
- Lower hydraulic resistance to the flow and lower losses on the hot air transfer
- Decreased height of an indurating building - savings on capital expenses

1st section with the updraft of gases of 250°C ensures minimum overmoistening and maximum removal of the capillary moisture
2nd section with the downdraft of gases of 300°C - preparation for the intensive treatment
3rd section: gases of 550°C are supplied by a designated ‘hot medium’ process fan
Torex®

Intelligent subsystems

- Group control over start and stop of the continuous handling systems
- Ratio between the green pelletizing area and indurating area outputs
- Optimization of green pelletizing with the Granulometer technology

Contactless Measuring System

Measurements and numerical processing:
- Grain-size composition
- Shape coefficient
- Roughness index
- Moisture content

Sampling Tower

Automated evaluation of the product quality

Management of Information Flows in the DCS of TKOM-3

Process Algorithms for Production Management

1. A slot sampler;
2. A sleeve chute;
3. A belt conveyor;
4, 14, 16 - Weighing hoppers;
5, 15 - Belt reversible conveyors;
6, 8, 10 - Sector-type dividers;
7. A jaw crusher;
9. A roller crusher;
11. A ball mill;
12. An analytical scale;
13. A single-sieve vibrating screen;
17. A quartering device;
18. A platform scale;
19. A compression strength evaluation system;
20. A drum for mechanical properties' tests.
COMPARATIVE ANALYSIS OF PERFORMANCE INDICES OF THE MOK-1-592 INDURATING MACHINE WITH SIMILAR MACHINES

<table>
<thead>
<tr>
<th></th>
<th>UOM</th>
<th>Mikhailovsky GOK MOK-1-592</th>
<th>Karelskiy Okatysh Pellet Plant</th>
<th>Kachkanarsky GOK</th>
<th>Lebedinsky GOK</th>
<th>OEMK</th>
<th>Severniy GOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine vendor</td>
<td></td>
<td>UZTM/Uralmash</td>
<td>UZTM/Uralmash</td>
<td>UZTM/Uralmash</td>
<td>UZTM/Uralmash</td>
<td>Outotec</td>
<td>UZTM/Uralmash</td>
</tr>
<tr>
<td>Machine area</td>
<td>m²</td>
<td>592</td>
<td>520/536</td>
<td>228</td>
<td>306</td>
<td>480</td>
<td>306</td>
</tr>
<tr>
<td>Production rate/Output</td>
<td>t/h</td>
<td>631</td>
<td>540</td>
<td>200</td>
<td>270</td>
<td>473</td>
<td>263</td>
</tr>
<tr>
<td>Specific production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power consumption on fans</td>
<td>kWt*h/t</td>
<td>22</td>
<td>36.14</td>
<td>33.8</td>
<td>45.1</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>Specific fuel consumption</td>
<td>m³/t</td>
<td>9.5</td>
<td>7.92 kg/ton (fuel oil)</td>
<td>20.6</td>
<td>15.9</td>
<td>9.4</td>
<td>18.8</td>
</tr>
<tr>
<td>Specific heat consumption</td>
<td>MJ/ton</td>
<td>303</td>
<td>317</td>
<td>686</td>
<td>506</td>
<td>303</td>
<td>599</td>
</tr>
<tr>
<td>Specific volume of gases in a waste gas stack</td>
<td>m³/t</td>
<td>1400</td>
<td>2700</td>
<td>3400</td>
<td>3000</td>
<td>2200</td>
<td>3400</td>
</tr>
</tbody>
</table>
REFERENCE PROJECT IN IRAN

PERFORMANCE INDICES OF THE 672 m² INDURATING MACHINE

SANGAN 1

<table>
<thead>
<tr>
<th>Customer</th>
<th>Plant Type & Capacity</th>
<th>Area, m²</th>
<th>Feed Material & Fuel</th>
<th>Design Rates</th>
<th>Product Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMIDRO</td>
<td>Pelletizing Plant 5Mty</td>
<td>672</td>
<td>Hematite/Magnetite blend</td>
<td>654 38 24.8</td>
<td>DR grade 250 6.0 94.0</td>
</tr>
<tr>
<td>Sangan Pelletizing Plant 1 Iran</td>
<td>Straight-grate indurating machine</td>
<td></td>
<td></td>
<td>654/670 38/30 24.8/15.4</td>
<td>DR grade 250/280 6/2.5 94/97.2</td>
</tr>
</tbody>
</table>

SANGAN 2

<table>
<thead>
<tr>
<th>Customer</th>
<th>Plant Type & Capacity</th>
<th>Area, m²</th>
<th>Feed Material & Fuel</th>
<th>Design Rates</th>
<th>Product Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobarakeh Steel</td>
<td>Pelletizing Plant 5Mty</td>
<td>672</td>
<td>Hematite/Magnetite blend</td>
<td>654 38 24.8</td>
<td>DR grade 250 6.0 94.0</td>
</tr>
<tr>
<td>Sangan Pelletizing Plant 2 Iran</td>
<td>Straight-grate indurating machine</td>
<td></td>
<td></td>
<td>654/670 38/30 24.8/15.4</td>
<td>DR grade 250/280 6/2.5 94/97.2</td>
</tr>
</tbody>
</table>

Design values / values during the performance guarantee tests

Fast

Efficient

Cutting-Edge
<table>
<thead>
<tr>
<th>Name</th>
<th>Performance index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic impact:</td>
<td></td>
</tr>
<tr>
<td>Additional output of product pellets</td>
<td>5.2 mln. t/year</td>
</tr>
<tr>
<td>Environmental impact:</td>
<td></td>
</tr>
<tr>
<td>Reduction of nitrogen dioxide emissions</td>
<td>75 %</td>
</tr>
<tr>
<td>Reduction of nitrogen oxide emissions</td>
<td>75 %</td>
</tr>
<tr>
<td>Reduction of dust emissions</td>
<td>10 %</td>
</tr>
<tr>
<td>Social impact:</td>
<td></td>
</tr>
<tr>
<td>Creation of additional jobs</td>
<td>267 jobs</td>
</tr>
<tr>
<td>Additionally employed</td>
<td>604 pax</td>
</tr>
</tbody>
</table>
Thanks for your attention!